Ground-based simulation of a space-based Doppler lidar atmospheric wind sounder

G. D. Emmitt and S. A. Wood

Abstract

The current concept of a space-based Doppler lidar atmospheric wind sounder is a pulsed (8-Hz) coherent CO2 laser with a conical scanner (36°/s), which obtains line-of-sight (LOS) measurements of the winds within cylindrical sample volumes (r = 10 m, l = 500 m) spaced at ~120-km intervals. To estimate the horizontal wind vectors, these LOS data are then combined using algorithms based on simplified or idealized models of the real wind field and its spatial and temporal variations.